硕士论文网/国内首批论文服务机构

当前位置:硕士论文网首页 > 经济学论文 > 工程经济学论文 > 工程经济学在实际应用中的问题探讨

工程经济学在实际应用中的问题探讨

时间:2021-03-26 21:03 | 栏目:工程经济学论文 | 浏览:

硕士论文网第2021-03-26期,本期硕士论文写作指导老师为大家分享一篇工程经济学论文文章《工程经济学在实际应用中的问题探讨》,供大家在写论文时进行参考。
  摘 要:近些年来,我国的经济和科技在各方面都取得了飞跃性的发展和进步,这意味着各行各业发展的速度都有了前所未有的突破。对于一些特殊的行业,在经营和发展的过程中必然要使用和参考工程经济学中的一些特殊知识。本文主要围绕着工程经济学在实际运用过程中的相关问题来展开具体分析和讨论的。
  关键词:工程经济学;实际应用;问题探讨
1 工程经济学在实际应用中的问题讨论
1.1 复利计息不一定比单利计息高
  一些专业的人员通过了解工程经济学以后,就能够清晰明确的知道当资金的本金、利率和时间这三个条件相等时,复利大于单利这一言论毫无疑问是正确的。因为,从利息的含义和定义来看,单利指的就是本金所产生的利息,但是利息并不产生利息,复利则是在本金产生利息的前提下,利息也会产生相应的利息。举两个例子比较说明:
(1) 李明向银行贷款了 1 万元资金,彼此间约定五年后进行一次性归还,此时,向银行进行贷款的年利率为 10%。问:
①倘若该银行按照单利算利息,李明在五年之后需要偿还多少资金给银行?此时还款中所占的利息又是多少?
②倘若银行按照复利来计算利息,李明在还款期限到达以后应该还多少资金给银行?此时还款中的利息又是多少?
对于这两个问题的解答,具体的数据分析步骤如下所示:
解:①按单利计算的本金与利息之和:10000×(1+5×10%)15000 = 15000 元,其中所占的利息为:10000×5×10% =5000 元。
②按复利计算的本金与利息之和:10000×(1 + 10%)^5 = 16105 元,其中所占的利息为:16105 - 10000 = 6105 元。由以上计算显而易见得出复利计息大于单利计息的结论。但在对以下例子进行分析和解答时,结果却与上述结论存在自相矛盾的情况。
(2) 李华五月份在银行存款十万元,存款期限为十年,此时银行的存款年利率为百分之十二,每个季度存在一次复利的情况。在计算利息的期限和时间段内,存款分别按照单利和复利两种方法来进行计算,试问当存款期限到来时,李华能够得到的本金与利息之和为多少?具体的解题流程如下:
解:①复利计息:i 季 度 = 3%, 此 时 (1 + i 月 ) - 1 = 3%, 则 i 月 = 0.9901634%,F = 100000(F/A,0.9901634%,3)(F/A,3%,40) =22845095.99 元
②单利计息:由年利率百分之十二,每季度进行一次复利,可得每一季度的利率为百分之三,此时每季度结算的存款与本利之和为:F 季度= 3030000×[(1 + 3%^40 - 1]/30% = 22846581.7 元从以上计算的步骤和流程可以看出,复利计算的结果反而比单利计算的结果要低出很多,之所以出现这样的问题,其原因是:尽管资金的本金、时间这二者条件是相统一的,但是单利计息与复利计息在进行计算时所使用的利率并不一致。比如第一道题,实际上单利的月利率为 3%/3 = 1,而实际上复利的利率却是 0.9901634%,这一计算结果能够明显看出单利的实际月利率要稍高出复利的实际月利率,因此,使用单利计算得出的结果自然要比使用复利计算得出的结果要高出。由此可以看出,复利大于单利这一结论,在资金的本金、利率和时间这三个条件相等的情况下是完全正确的。但倘若没有将资金的本金、利率和时间相等这一条件作为基础和前提,而片面的认为复利计息一定比单利计息高则是荒谬的。
工程经济学在实际应用中的问题探讨
1.2 资金成本率与资金的占用期限相关
  学过工程经济学的人都知道,在教材中有关于向银行进行贷款的资金成本率的记算方式是通过以下这种形式来表达的:Kd =(1 - T)R/(1 - f)。[1] 其中 Kd 表示的是资金的成本率 ;T 表示的是所得税的税率 ;R 表示的是银行贷款的利率 ;f 表示的是融资费用占融集资金总量之比,即融资费费率。这个看似简单的式子表明,向银行进行贷款的资金成本率的计算结果与资金使用的时间和期限没有关联。举例说明:现有一家企业向银行进行了五千万元的贷款,贷款的时间是五年,此时年利率为百分之十,计息的方式为每年一次,到了约定还款的期限进行一次性的还本,此时融资费的费率是百分之五,企业需要向相关的政府部门缴纳企业所得税税百分之二十五,要求计算该公司向银行进行贷款所产生的税后资金成本率是多少?由以上计算公式可直接得出 Kd 等于7.54%。之所以说银行贷款的资金成本率与资金的占用期限之间不存在关联的原因是:工程经济学教材中出现的计算方式与该案例的分析都是从静态的角度来展开的,仅仅通过计算分析资金成本率,其所产生的结果自然与资金的占用时间和期限没有关联。但倘若换个角度,从动态的方向进行分析,就可以得出资金成本率与资金占用期限之间是相关联的。就该例子来进一步从动态的角度分析和计算资金成率的步骤流程如下:
企 业 实 际 融 资 额:5000 - 5000×0.5% = 4975 万 元 整, 受 到 抵 税 这 一 因 素 的 影 响, 各 年 所 需 要 缴 纳 的 利 息 为:5000×10%×(1 - 25%) = 375 万元整,在贷款日期截止后需要偿还的本金是 5000 万元,那么由 4975 - 375(P/A,Kd,5) -5000(P/A,Kd,5) = 0 可得,税后资金的成本率是 7.625%。倘若将贷款期限更改为十年,那么资金成本率的计算步骤则是:4975 - 375(P/A,Kd,10) - 5000(P/A,Kd,10) = 0,显而易见,由于贷款期限的改变,最后资金成本率必然也会随之而改变,不再是 7.625%。由此可以得出,倘若从动态分析的角度来对资金成本率与资金的占用期限之间的关系进行研究,那么二者是息息相关的。
1.3 差额投资原理在互斥方案评价中的运用
  工程经济学有关于互斥方案的评价中提出了差额投资净现值和差额投资内部收益这两种方法,来具体的对差额投资原理的详细应用进行分析。但在实际的运用和操作工作过程中,经常会存在无法确定每个互斥方案中详细的现金使用和流动情况,但互斥方案之间存在的一些不同却是非常容易分析和了解到的,这时就形成了差额方案。在这种情况和状态下,工程经济学中所提出的差额投资原理就显示出了其优越性和独到价值。对于差额投资原理的定义是:当在实际过程中对 A 和 B 两个互斥方案进行评价时,将投资额略大的 B 方案理解 : 投资额最小的 A 方案同 C 投资方案之间的总和,此时 C 代表的就是 ] A 相对于 B 的差额投资。[2] 换言之,B 方案的现金流量就是 A 方案与 C 方案的现金流量之和,即 A 加 C 等于 B。倘若 A 项目是可以实施的,此时再出现一个 C 项目可以同 A 项目进行叠加,形成一个新的项目 B,当 C 项目也具有可实施性时,就可以选择 A,C 之间进行组合,即 B。这是工程经济学中一个典型的原理呈现出的言论,用到此例中就是 :C 是 B 相对于 A 而言的追加投资,倘若 C 方案具有可行性,那么就意味着进行追加投资活动是有效且值得的,同时也能够得出 B 方案比 A 方案更具优越性。
2 简述解决工程经济学在实际运用过程中出现问题的措施
  (1) 确保工程经济学的信息化、高效化、科学化、智能化。
  (2) 我国工程经济学研究单位以及与此相关的各个高等院校,都应该积极配合和满足国家工程经济发展的需求,努力培养和塑造工程经济学方面的专业人才。
结语
  未来工程经济学的发展趋势必然与当前信息化的时代相趋同,因此在实际运用过程中必须要针对一些问题采取相应的措施,以确保工程经济学在实际运用过程中能够发挥它独一无二的价值和优越性。以上分析的这些应用性问题表明我国在工程经济学理论的实际运用过程中,与世界先进水平之间的差距仍然是比较悬殊的。面对这一现实情况,我国应该清晰明确的认识到工程经济学未来的和现下的发展方向,确保其能够为加快我国工业化进程发展而服务。
参考文献
[1] 刘小君 . 工程经济学 [J]. 中国建筑工业 ,2017(14):104
(2) 黄有亮 . 工程经济学 [J]. 企业导报 ,2018(26):34


以上论文内容是由硕士论文网为您提供的关于《工程经济学在实际应用中的问题探讨》的内容,如需查看更多硕士毕业论文范文,查找硕士论文、博士论文、研究生论文参考资料,欢迎访问硕士论文网工程经济学论文栏目。